Supplementary Information

Landscape context affects the sustainability of organic farming systems

Olivia M. Smith, Abigail L. Cohen, John P. Reganold, Matthew S. Jones, Robert J. Orpet, Joseph M. Taylor, Jessa H. Thurman, Kevin A. Cornell, Rachel L. Olsson, Yang Ge, Christina M. Kennedy, David W. Crowder

Supplementary Methods

We searched references from the following meta-analyses as a first step in obtaining studies for our analysis of ecosystem services in organic and conventional agroecosystems.

- S1. Batary, P., Baldi, A., Kleijn, D. & Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. *Proc. R. Soc. B Biol. Sci.* 278, 1894–1902 (2011).
- S2. Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. *Proc. Natl. Acad. Sci.* **112**, 7611–7616 (2015).
- S3. Crowder, D. W., Northfield, T. D., Gomulkiewicz, R. & Snyder, W. E. Conserving and promoting evenness: organic farming and fire-based wildland management as case studies. *Ecology* 93, 2001–2007 (2012).
- S4. Gonthier, D. J. *et al.* Biodiversity conservation in agriculture requires a multi-scale approach. *Proc. R. Soc. B Biol. Sci.* **281**, 9–14 (2014).
- S5. Lichtenberg, E. M. *et al.* A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. *Glob. Chang. Biol.* 23, 4946–4957 (2017).

- S6. Lori, M., Symnaczik, S., M\u00e4der, P., Deyn, G. De & Gattinger, A. Organic farming enhances soil microbial abundance and activity – A meta-analysis and meta-regression. *PLoS ONE* 12, 1–25 (2017).
- S7. Montañez, M. N. & Amarillo-Suárez, A. Impact of organic crops on the diversity of insects : A review of recent research. *Rev. Colomb. Entomol.* 40, 131–142 (2014).
- Ponisio, L. C. *et al.* Diversification practices reduce organic to conventional yield gap.
 Proc. R. Soc. B Biol. Sci. 282, 20141396–20141396 (2014).
- S9. Prieto-Benítez, S. & Méndez, M. Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis. *Biol. Conserv.* 144, 683–691 (2011)
- S10. Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. *Nature* 485, 229–232 (2012).
- S11. Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
- S12. Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? - A meta-analysis of European research. *J. Environ. Manage*. **112**, 309–320 (2012).

Table S1. List of all landscape variables. For each study, we assessed landscape context in a 1km radius around the coordinates given for each sampled location. If studies included more than one sampling location, we calculated the landscape in a 1-km buffer around each location and averaged the values to generate one landscape metric per study, which represented the average of all the landscapes sampled in the study. The table indicates if a variable represents landscape composition, compositional heterogeneity (number and proportions of different cover types), or configurational heterogeneity (spatial arrangement of cover types) and if a value was selected for final analyses based on Spearman's correlation coefficient, Pearson's correlation coefficient, and the variance inflation factor. The final variables chosen were also variables that are commonly used in studies examining effects of landscape context on metrics of sustainability. See the FRAGSTATS website for more metric information

(http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Metrics%20TOC.htm) or Fahrig et al. (2011).

Category	Metric type	Class	Used in	Definition
			analyses	
Field_size_1000	Configurational	Numeric	Yes	Field size calculated for all
	heterogeneity	value		studies from IIASA-IFPRI
				global field size map by Fritz
				et al. (2015); 1 km resolution
				https://cropland.geo-
				wiki.org/downloads/
X_Crop	Landscape	Percentage	Yes	Percent cropland; calculated
	composition			for all studies
				Europe – CORINE with 35 m
				resolution
				http://www.eea.europa.eu/pub
				lications/COR0-landcover
				United States – NASS
				Cropland Data Layer
				(CDL)with 30 m resolution
				https://nassgeodata.gmu.edu/
				CropScape/
				Elsewhere – IIASA-IFPRI
				Cropland Percentage Map by
				Fritz et al. (2015) with 1 km
				resolution
				https://cropland.geo-
				wiki.org/downloads/

				See Supplementary Data 4 for
				reclassification schemes for
				CORINE and CDI
X Natural	Landscane	Dercentage	No	Percent natural habitat: only
A_Ivaturai		Tercentage	NU	alculated for studies in
	composition			Europe and the United States
				Europe and the United States
				Europe – CORINE with 55 m
				resolution
				http://www.eea.europa.eu/pub
				lications/COR0-landcover
				United States – NASS
				Cropland Data Layer
				(CDL)with 30 m resolution
				https://nassgeodata.gmu.edu/
				<u>CropScape/</u>
X_Urban	Landscape	Percentage	No	Percent urban habitat; only
	composition			calculated for studies in
				Europe and the United States
				Europe – CORINE with 35 m
				resolution
				http://www.eea.europa.eu/pub
				lications/COR0-landcover
				United States – NASS
				Cropland Data Layer
				(CDL) with 30 m resolution
				https://nassgeodata.gmu.edu/
				CropScape/
ED	Configurational	Numeric	No	Edge density – sum of length
	heterogeneity	value		(m) of all edge segments
				divided by the total landscape
				area (m^2) multiplied by
				10,000 to convert to bectares
				Only calculated for studies in
				Europe and the United States
Not ED	Configurational	Numerio	No	Edge density sum of longth
Nat_ED	botorogonoity	voluo	NU	Edge density $-$ sum of length (m) of all natural habitat adap
	neterogeneity	value		(III) of all flatural flatoflat edge
				segments divided by the total landscope area (m^2)
				randscape area (m ⁻)
				multiplied by 10,000 to
				convert to hectares. Only

				calculated for studies in
				Europe and the United States.
Crop_ED	Configurational	Numeric	No	Edge density – sum of length
	heterogeneity	value		(m) of all crop land edge
				segments divided by the total
				landscape area (m ²)
				multiplied by 10,000 to
				convert to hectares. Only
				calculated for studies in
				Europe and the United States.
AREA_MN	Configurational	Numeric	No	Mean patch area – sum across
	heterogeneity	value		all patches in the landscape of
				the corresponding patch
				metric values divided by the
				total number of patches. Only
				calculated for studies in
				Europe and the United States.
Nat_AREA_MN	Configurational	Numeric	No	Mean patch area – sum across
	heterogeneity	value		all natural habitat patches in
				the landscape of the
				corresponding patch metric
				values divided by the total
				number of patches. Only
				calculated for studies in
				Europe and the United States.
Crop_AREA_M	Configurational	Numeric	No	Mean patch area – sum across
Ν	heterogeneity	value		all crop land patches in the
				landscape of the
				corresponding patch metric
				values divided by the total
				number of patches. Only
				calculated for studies in
				Europe and the United States.
ENN_MN	Configurational	Numeric	No	Euclidean nearest-neighbor
	heterogeneity	value		distance – distance (m) to the
				nearest neighboring patch of
				the same type, based on
				shortest edge-to-edge distance
				from cell center to cell center.

				Only calculated for studies in
				Europe and the United States.
Nat_ENN_MN	Configurational	Numeric	No	Euclidean nearest-neighbor
	heterogeneity	value		distance – distance (m) to the
				nearest neighboring patch of
				the same natural habitat type,
				based on shortest edge-to-
				edge distance from cell center
				to cell center. Only calculated
				for studies in Europe and the
				United States.
Crop_ENN_MN	Configurational	Numeric	No	Euclidean nearest-neighbor
	heterogeneity	value		distance – distance (m) to the
				nearest neighboring patch of
				the same crop land type,
				based on shortest edge-to-
				edge distance from cell center
				to cell center. Only calculated
				for studies in Europe and the
				United States.
CONTAG	Configurational	Numeric	No	Contagion index - minus the
	heterogeneity	value		sum of the proportional
				abundance of each patch type
				multiplied by the proportion
				of adjacencies between cells
				of that patch type and another
				patch type, multiplied by the
				logarithm of the same
				quantity, summed over each
				unique adjacency type and
				each patch type; divided by 2
				times the logarithm of the
				number of patch types;
				multiplied by 100 (to convert
				to a percentage). In other
				words, the observed
				contagion over the maximum
				possible contagion for the
				given number of patch types.

				Only calculated for studies in
				Europe and the United States.
Nat_CONTAG	Configurational	Numeric	No	Contagion index - minus the
	heterogeneity	value		sum of the proportional
				abundance of each natural
				habitat patch type multiplied
				by the proportion of
				adjacencies between cells of
				that patch type and another
				patch type, multiplied by the
				logarithm of the same
				quantity, summed over each
				unique adjacency type and
				each natural habitat patch
				type; divided by 2 times the
				logarithm of the number of
				natural habitat patch types;
				multiplied by 100 (to convert
				to a percentage). In other
				words, the observed
				contagion over the maximum
				possible contagion for the
				given number of natural
				habitat patch types. Only
				calculated for studies in
				Europe and the United States.
Crop_CONTAG	Configurational	Numeric	No	Contagion index - minus the
	heterogeneity	value		sum of the proportional
				abundance of each crop
				habitat patch type multiplied
				by the proportion of
				adjacencies between cells of
				that crop habitat patch type
				and another patch type,
				multiplied by the logarithm of
				the same quantity, summed
				over each unique adjacency
				type and each crop habitat
				patch type; divided by 2 times
				the logarithm of the number

				of crop habitat patch types;
				multiplied by 100 (to convert
				to a percentage). In other
				words, the observed
				contagion over the maximum
				possible contagion for the
				given number of crop habitat
				patch types. Only calculated
				for studies in Europe and the
				United States.
IJI	Configurational	Numeric	No	Interspersion juxtaposition
	heterogeneity	value		index - the observed
				interspersion over the
				maximum possible
				interspersion for the given
				number of patch types. Only
				calculated for studies in
				Europe and the United States.
Nat_IJI	Configurational	Numeric	No	Interspersion juxtaposition
	heterogeneity	value		index - the observed natural
				habitat interspersion over the
				maximum possible natural
				habitat interspersion for the
				given number of natural
				habitat patch types. Only
				calculated for studies in
				Europe and the United States.
Crop_IJI	Configurational	Numeric	No	Interspersion juxtaposition
	heterogeneity	value		index - the observed crop
				habitat interspersion over the
				maximum possible crop
				habitat interspersion for the
				given number of crop patch
				types. Only calculated for
				studies in Europe and the
				United States.
PR	Compositional	Numeric	Yes	Patch richness - number of
	heterogeneity	value		unique patch types in the
				landscape calculated for
				Europe and United States

				studies using CORINE and
				CDL, respectively
				(reclassified to 16 cover
				types)
Nat PR	Compositional	Numeric	No	Patch richness - number of
	heterogeneity	value		unique patch types in the
				landscape for natural cover
				types calculated for Europe
				and United States studies
				using CORINE and CDL.
				respectively (reclassified to
				4 natural cover types)
Crop PR	Compositional	Numeric	No	Patch richness - number of
crop_r R	heterogeneity	value	110	unique patch types in the
	neterogeneity	varue		landscape for crop cover
				types calculated for Europe
				and United States studies
				using CORINE and CDI
				respectively (reclassified to 7
				crop cover types)
SUDI	Compositional	Numaria	Vac	Shannon's Diversity Index
SHDI	beterogeneity	Numeric	ies	diversity of the landscape
	neterogeneity	value		diversity of the fandscape
				accounting for relative
				adundance of cover types
				Lucited States studies using
				CORDUE and CDL
				CORINE and CDL,
				respectively (reclassified to
			NT	16 cover types)
Nat_SHDI	Compositional	Numeric	NO	Shannon's Diversity Index –
	heterogeneity	value		diversity of the landscape
				accounting for relative
				abundance of cover types
				calculated for natural cover
				types in Europe and United
				States studies (reclassified to
				4 natural cover types)
Crop_SHDI	Compositional	Numeric	No	Shannon's Diversity Index –
	heterogeneity	value		diversity of the landscape
				accounting for relative

				abundance of cover types
				calculated for crop cover
				types in Europe and United
				States studies (reclassified to
				7 crop cover types)
SHEI	Compositional	Numeric	No	Shannon's evenness index –
	heterogeneity	value		minus the sum, across all
				patch types, of the
				proportional abundance of
				each patch type, multiplied by
				that proportion, divided by the
				logarithm of the number of
				patch types. Only calculated
				for studies in Europe and the
				United States (reclassified to
				16 cover types)
Nat_SHEI	Compositional	Numeric	No	Shannon's evenness index –
	heterogeneity	value		minus the sum, across all
				natural habitat patch types, of
				the proportional abundance of
				each natural habitat patch
				type, multiplied by that
				proportion, divided by the
				logarithm of the number of
				natural habitat patch types.
				Only calculated for studies in
				Europe and the US
				(reclassified to 4 cover types)
Crop_SHEI	Compositional	Numeric	No	Shannon's evenness index –
	heterogeneity	value		minus the sum, across all crop
				patch types, of the
				proportional abundance of
				each crop patch type,
				multiplied by that proportion,
				divided by the logarithm of
				the number of crop patch
				types. Only calculated for
				studies in Europe and the
				United States (reclassified to
				7 crop cover types)

Table S2. Variance inflation factor (VIF) of variables selected after examining scatterplots and histograms considered for use in models (Figs. S15-S19).

Variable	VIF
% Crop	1.22
Field size	1.47
PR	5.60
Nat_PR	3.95
Crop_PR	4.97
SHDI	6.74
Nat_SHDI	4.52
Crop_SHDI	5.68

Table S3. Variance inflation factor (VIF) of reduced set of variables used in final models.

Variable	VIF
% Crop	1.09
Field size	1.13
PR	2.36
SHDI	2.22

Table S4. Full model set considered for "simple" models with only two landscape variables (% cropland and field size). These models included the full dataset (as % cropland and field size could be calculated from every study in the dataset).

Model	Variables included in model
1	% Crop
2	% Crop, % Crop ²
3	Field size
4	Field size, Field size ²
5	% Crop, Field size, % Crop:Field size
6	% Crop, % Crop ² , Field size, Field size ² , % Crop:Field size

Table S5. Full model set considered for "complex" model set one with three landscape variables (% cropland, field size, and SHDI). These models included a reduced dataset (as SHDI could only be calculated for a subset of studies, see methods). The model # extends Table S4.

Model	Variables included in model
7	% Crop
8	% Crop, % Crop ²
9	Field Size
10	Field size, Field size ²
11	SHDI
12	% Crop, Field size, % Crop:Field size
13	% Crop, % Crop ² , Field size, Field size ² , % Crop:Field size
14	% Crop, SHDI, % Crop:SHDI
15	% Crop, % Crop ² , SHDI, % Crop:SHDI
16	Field Size, SHDI, Field size:SHDI
17	Field size, Field size ² , SHDI, Field size:SHDI
18	% Crop, Field size, SHDI, % Crop:Field size, % Crop:SHDI, Field size:SHDI
19	% Crop, % Crop ² , Field size, Field size ² , SHDI, % Crop:Field size,
	% Crop:SHDI; Field size:SHDI

Table S6. Full model set considered for "complex" model set two with three landscape variables
(% cropland, field size, and PR). These models included a reduced dataset (as PR could only be
calculated for a subset of studies, see methods). The model # extends Table S4.

Model	Variables included in model
20	% Crop
21	% Crop, % Crop ²
22	Field size
23	Field size, Field size ²
24	PR
25	% Crop, Field size, % Crop:Field size
26	% Crop, % Crop ² , Field size, Field size ² , % Crop:Field size
27	% Crop, PR, % Crop:PR
28	% Crop, % Crop ² , PR, % Crop:PR
29	Field size, PR, Field size:PR
30	Field size, Field size ² , PR, Field size:PR
31	% Crop, Field size, PR, % Crop:Field size, % Crop:PR, Field size:PR
32	% Crop, % Crop ² , Field size, Field size ² , PR, % Crop:Field size,
	% Crop:PR, Field size:PR

Category	Class	Definition
Pub.id		ID assigned to study
Pub.date	1986 to 2017	Year of publication
Study.name		Format as:
		Last Name YEAR
		Last Name and Last Name YEAR
		Last Name et al YEAR
Country	Argentina	Country or countries the study took
Country	Australia	place in
	Belgium	
	Belgium and the Netherlands	
	Bolivia	
	Brazil	
	Canada	
	China	
	Costa Rica	
	Costa Rica and Guatemala	
	Croatia	
	Czech Republic	
	Denmark	
	Estonia	
	Finland	
	France	
	Germany	
	Greece	
	India	
	Ireland	
	Italy	
	Japan	
	Kenya	
	New Zealand	
	Romania	
	South Africa	
	Spain	
	Sweden	
	Switzerland	
	Taiwan	
	Thailand	
	I ne Netherlands	
	I unisia	
	Turkey	

Table S7. List of variables used in data collection for meta-analysis for studies on biotic abundance, biotic richness, crop yields, and profitability

	UK	
	USA	
Continent	Africa	Continent on which study took place
	Asia	
	Australia	
	Europe	
	North	
	America	
	South	
	Zoolondio	
Piomo	Rereal	Rioma in which study accurred
Diome	Dogert	blone in which study occurred
	Desert	based on the website
	Temperate	https://ecoregions2017.appspot.com/
	Tropical	
Vear initiated	Numeric value	Year study was initiated
Study duration	Numerie value	Number of years in which date were
Study.duration	Numeric value	collected
Study.grp	Farm – entire farm	Scale of study
	Field – boundary within area managed	
	by farm not extending to entire farm	
	Plot – experimental plot	
Study.type	Experiment Station	Way in which data were collected
	On Farm	
	Survey – paper survey sent to growers	
Crop	Alfalfa	Crop type(s) in study
	Amaranth	
	Apple	
	Apricot	
	Banana	
	Barley	
	Bean	
	Beetroot	
	Broccoli	
	Cabbage	
	Casso	
	Canala	
	Cantola	
	Cantaloupe	
	Carrot	
	Cauliflower	
	Cereals	

Citrus	
Clover	
Coffee	
Corn	
Cotton	
Cowpea	
Dairy	
Elephant foot yam	
Flax	
Grapes	
Grass	
Green beans	
Guarana	
Leek	
Lentil	
Lettuce	
Lupin	
Melon	
Multi – multiple crops sampled	
Oats	
Okra	
Olive	
Onion	
Other	
Pea	
Peach	
Pepper	
Peppermint	
Plum	
Potato	
Pumpkin	
Rice	
Rye	
Safflower	
Soybean	
Spinach	
Squash	
Strawberry	
Sweet corn	
Sweet potato	

	Tomo	
	Tomato	
	Water animach	
	Water spinach	
	Watermelon	
	Wheat	
	Yam	
Crop.type	Cereals	Following FAO definitions
	Beverage	
	Fruits	
	Leguminous	
	Multi – multiple crop types sampled	
	Oil crops	
	Other	
	Roots	
	Vegetables	
Annual.perennial	Annual – completes life cycle within	Follow NRCS classifications
1	one year then dies	
	Perennial – alive year-round for 2+	
	vears: harvested multiple times	
	Annual/perennial – perennial crop	
	grown as an annual or locally	
	determined	
Crop diversity	Monocrop = one crop grown in unit	Crop field diversity in organic and
crop.urversity	measured (farm field or plot)	conventional treatments
	Multicrop.both – two or more crops	conventional treatments
	grown in unit measured	
	Multicrop.org - two or more crops	
	grown in unit measured for organic	
	only	
	Multicrop.conv - two or more crops	
	grown in unit measured for	
	conventional only	
Rotations	Longer organic – crop rotations longer	Rotation length in organic and
	in organic treatments	conventional treatments
	Longer conventional - crop rotations	
	longer in conventional treatments	
	Similar – similar crop rotations in	
	treatments	
	None – no crop rotations in either	
	treatments	

Irrigation	Org – only in organic treatment(s)	Irrigation practices in organic and
	Conv – only in conventional	conventional treatments
	treatment(s)	
	Both – both treatments use irrigation to	
	some extent	
	Neither – neither use irrigation	
	(rainfed)	
Tillage	Conventional no-till – conventional no	Tillage practices in organic and
	till but organic till	conventional treatments
	Conventional reduced – conventional	
	reduced tillage but organic till	
	No-till – Doth no till Organia reduced – conventional	
	standard tillage but organic	
	reduced tillage	
	Reduced – both reduced	
	Standard – both standard	
	Variable – multiple tillage treatments	
Org.cert	Biodynamic – uses organic practices	Organic certification level; use what
	and treats farm as integrated	paper stated
	system following Rudolf Steiner	
	Certified – certified organic farm	
	Org.stand- uses organic certification	
	standards but uncertified	
	Transitioning – transitioning to organic	
	practices from conventional	
Conv.cert	Commercial - High-input commercial	Conventional practice as stated in
	system	paper
	Low input - Any low-input	
	commercial system using	
	conventional inputs at low rates	
N.org	Numeric value between 1 and 165	Number of organic replicates
N.conv	Numeric value between 1 and 457	Number of conventional replicates
N.coords	Numeric value between 1 and 290	Number of unique site locations
		used to calculate landscape metrics
Developed	Developed – very high HDI	Followed Human Development
1	Less developed – high, medium, or	Report (used in Crowder and
	low HDI	Reganold (2015)
n.input	more conv - $> 50\%$ more N input than	Nitrogen input in conventional and
	organic treatment	organic treatments
	more org $- > 50\%$ more N input than	
	organic treatment	
	? - unknown	

	Similar - Organic and conventional	
	received similar (i.e. in the range of	
	-50%) amounts of N per ha per	
	vear over the course of one rotation	
	(or over the study period if it did	
	not cover an entire rotation)	
Org.n.input	Numeric value	In kg/ha: amount of N. If fertilizer is
- 0 - 1		reported as amount manure, would
		be entered as N/A unless they report
		a % N per unit of manure
Conv n input	Numeric value	In kg/ha: amount of N If fertilizer is
Convininput		reported as amount manure would
		be entered as N/Δ unless they report
		a % N per unit of manure
Dinnut	more conv > 50% more N input then	Phosphorous input in organic and
1.mput	organic treatment	conventional treatments
	more org $- > 50\%$ more N input than	conventional treatments
	organic treatment	
	similar	
Org.p.input	Numeric value	In kg/ha; amount of P. If fertilizer is
		reported as amount manure, would
		be entered as N/A unless they report
		a % P par unit of manura
		a % r per unit of manufe
Conv.p.input	Numeric value	In kg/ha; amount of P. If fertilizer is
Conv.p.input	Numeric value	In kg/ha; amount of P. If fertilizer is reported as amount manure, would
Conv.p.input	Numeric value	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report
Conv.p.input	Numeric value	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure
Conv.p.input Moisture	Numeric value High - > 0.4 alpha (ratio of actual to	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration)	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2 Medium - 3-4 & 11-22 kg C m-2	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2 Medium - 3-4 & 11-22 kg C m-2 Low - 4-11 kg C m-2	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon Soil.ph	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2 Medium - 3-4 & 11-22 kg C m-2 Low - 4-11 kg C m-2 neutral – weak acidic to weak alkaline	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon Soil.ph	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2 Medium - 3-4 & 11-22 kg C m-2 Low - 4-11 kg C m-2 neutral – weak acidic to weak alkaline 5.5-8	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)
Conv.p.input Moisture Soil.carbon Soil.ph	Numeric value High - > 0.4 alpha (ratio of actual to potential evapotranspiration) Medium - 0.3-0.4 alpha Low - < 0.3 alpha High - 4-11 kg C m-2 Medium - 3-4 & 11-22 kg C m-2 Low - 4-11 kg C m-2 neutral – weak acidic to weak alkaline 5.5-8 strong acidic - < 5.5	In kg/ha; amount of P. If fertilizer is reported as amount manure, would be entered as N/A unless they report a % P per unit of manure Follow Seufert et al. (2012)

Category	Class	Definition
Organism.grp	All – overall effect size	Organismal group
	across taxa	
	Archaea	
	Arth	
	Bacterial	
	Birds	
	Earthworms	
	Fungi	
	Mammals	
	Microbes – other than	
	fungi or bacterial;	
	unspecified microbes	
	Nematodes	
	Plants	
	Protozoa	
Functional.grp	Decomp	Used classifications from study and
	Herbivore	did not reclassify groups
	Other	
	Parasitoid	
	Pollinator	
	Predator	
	Producer	
Richness.org	Numeric value	Species richness in organic system
Richness.org.sd	Numeric value	Organic treatment species richness
		standard deviation
Richness.conv	Numeric value	Conventional treatment species
		richness
Richness.conv.sd	Numeric value	Conventional treatment species
		richness standard deviation
RichRR	Numeric value	Richness effect size calculated as log
		response ratio
		Log(Richness.org/Richness.conv)
Abundance.org	Numeric value	Species abundance in organic system
Abundance.org.sd	Numeric value	Organic treatment species abundance
		standard deviation

Table S8. List of variables used in data collection for studies on biotic abundance and richness

Abundance.conv	Numeric value	Conventional treatment species
		abundance
Abundance.conv.sd	Numeric value	Conventional treatment species
		abundance standard deviation
AbundRR	Numeric value	Abundance effect size calculated as
		log response ratio
		Log(Abundance.org/Abundance/conv)

Category	Class	Definition
Yield.unit	bu/ac	Units in which yield was
	g/m ²	reported
	ka/ha	
	kg	
	kg Fw/plant	
	kg/ha	
	kg/m ²	
	kg/plant	
	kg/tree	
	L/ha	
	Mg/ha	
	t/ha	
	tDM/ha	
Mean.conv	Numeric value	Mean yield in conventional
		treatment
Sd.conv	Numeric value	Standard deviation in
		conventional treatment
Mean.org	Numeric value	Mean yield in organic
		treatment
Sd.org	Numeric value	Standard deviation in organic
		treatment
YieldRR	Numeric value	Yield log response ratio

Table S9. List of variables used in data collection for studies on yield

Category	Class	Definition
ConPrice	Numeric value	Price of the conventional crop
OrgPrice	Numeric value	Price of the organic crop
ConCost	Numeric value	Production costs for the
		conventional crop
ConGRNoP	Numeric value	Gross returns without
		premiums for the
		conventional crop
OrgGRNoP	Numeric value	Gross returns without
		premiums for the organic
		crop
ConGRP	Numeric value	Gross returns with premiums
		for the conventional crop
OrgGRP	Numeric value	Gross returns with premiums
		for the organic crop
ConBCNoP	Numeric value	Benefit/cost ratio without
		premiums for the
		conventional crop
OrgBCNoP	Numeric value	Benefit/cost ratio without
		premiums for the organic
		crop
ConBC	Numeric value	Benefit/cost ratio with
		premiums for the
		conventional crop
OrgBC	Numeric value	Benefit/cost ratio with
		premiums for the organic
		crop
PriceRR	Numeric value	Price log response ratio
CostRR	Numeric value	Production cost log response
		ratio
GRNoRR	Numeric value	Gross returns without
		premiums log response ratio
GRYesRR	Numeric value	Gross returns with premiums
		log response ratio
BCNoRR	Numeric value	Benefit/cost ratio without
		premiums log response ratio
BCYesRR	Numeric value	Benefit/cost ratio with
		premiums log response ratio

Table S10. List of variables used in data collection for studies on profitability

CountryArgentina12Brazil111Canada511China11Costa Rica11Finland11France11Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12UK11The Netherlands23Tunisia11UK12USA1126ContinentAfrica1738North America23North America23Zealandia14
Brazil 1 1 Canada 5 11 Canada 1 1 China 1 1 China 1 1 Costa Rica 1 1 France 1 1 Germany 1 3 India 2 4 Ireland 2 6 Italy 5 8 Japan 1 6 New Zealand 1 4 South Africa 1 1 Spain 3 8 Sweden 1 2 Switzerland 6 9 Taiwan 1 1 The Netherlands 2 3 Tunisia 1 1 UK 1 2 USA 11 26 Continent Africa 2 2 Asia 5 12 Europe 23
Canada511China11China11Costa Rica11Finland11France11Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica23Asia512Europe2343North America13South America23Zealandia14
China11Costa Rica11Finland11France11Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14
Costa Rica 1 1 Finland 1 1 France 1 1 Germany 1 3 India 2 4 Ireland 2 6 Italy 5 8 Japan 1 6 New Zealand 1 4 South Africa 1 1 Spain 3 8 Sweden 1 2 Switzerland 6 9 Taiwan 1 1 The Netherlands 2 3 Tunisia 1 1 UK 1 2 USA 11 26 Continent Africa 2 2 Asia 5 12 Europe 23 43 North America 17 38 South America 2 3 Zealandia 1 4
Finland11France11Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14
France11Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica23Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Germany13India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14
India24Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14
Ireland26Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Italy58Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Japan16New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
New Zealand14South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
South Africa11Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Spain38Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Sweden12Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Switzerland69Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Taiwan11The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
The Netherlands23Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Tunisia11UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
UK12USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
USA1126ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
ContinentAfrica22Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Asia512Europe2343North America1738South America23Zealandia14BiomeBoreal22
Europe2343North America1738South America23Zealandia14BiomeBoreal22
North America1738South America23Zealandia14BiomeBoreal22
South America23Zealandia14BiomeBoreal22
Zealandia14BiomeBoreal22
Biome Boreal 2 2
Desert 2 7
Mediterranean 8 15
Temperate 33 71
Tropical 5 7
Year.initiated 1988-2015
Study.duration 1 27 65
$\frac{1}{3}$ 5 6
6 1 1
Study grp Farm 10 14
Field 20 40
$\begin{array}{c} 20 \\ \text{Plot} \end{array}$

 Table S11. Number of studies and effect sizes (estimates) for biotic abundance by category

Study type	Experiment Station	22	52
Study.type			32
	On Farm	22	43
	Survey	5	6
	N/A	1	1
Crop	Alfalfa	1	1
	Apple	3	6
	Banana	1	1
	Beetroot	1	1
	Canola	1	1
	Cereals	4	6
	Citrus	1	1
	Coffee	2	1
	Corre		4
	Com		4
	Dairy		2
	Grapes	3	3
	Grass	3	6
	Guarana	1	1
	Multi	10	18
	Olive	1	2
	Onion	1	4
	Peach	1	3
	Potato	2	2
	Rice	$\frac{2}{4}$	10
	Soybean	1	5
	Tomato	1	1
	Watarmalan	1	1
	watermeion		
	Wheat	10	18
	N/A	1	1
Crop.type	Beverage	2	4
	Cereals	19	38
	Fruits	9	15
	Multi	5	8
	Oil crops	3	8
	Other	9	18
	Root	2	2
	Vegetables	3	6
	N/A	3	3
Annual namonnial		21	5
Annual.perennial		51	09
	Annual/perennial	5	8
	Perennial	13	23
	N/A	2	2
Crop.diversity	Monocrop	37	84
	Multicrop.both	7	10
	Multicrop.org	2	2
	N/A	4	6
Rotations	Longer organic	4	11

	None	14	27
	Similar	23	46
	N/A	9	18
Irrigation	Both	10	19
inguion	Neither	5	12
	N/A	35	71
Tillage	Conventional reduced	1	4
Thiage	No-till		10
	Organic reduced	1	3
	Reduced	1	1
	Standard	15	
	Variable	1	1
		27	1 20
Orgoart	N/A Cortified	10	14
Oig.cen	Org stand	10	
		20	34
Course of the		14	34
Conv.cert	Commercial	39	88
	Low input	2	2
	N/A	9	12
Development	Developed	43	93
-	Less developed	7	9
n.coords		Min - 1	Min - 1
		Average – 7.7	Average – 6.2
		Max – 42	Max – 42
n.input	more conv	Max – 42 11	Max - 42 25
n.input	more conv more org	Max – 42 11 5	Max – 42 25 6
n.input	more conv more org similar	Max – 42 11 5 8	Max – 42 25 6 17
n.input	more conv more org similar N/A	Max – 42 11 5 8 26	Max - 42 25 6 17 54
n.input P.input	more conv more org similar N/A more conv	Max – 42 11 5 8 26 6	Max – 42 25 6 17 54 14
n.input P.input	more conv more org similar N/A more conv more org	Max – 42 11 5 8 26 6 4	Max – 42 25 6 17 54 14 10
n.input P.input	more conv more org similar N/A more conv more org similar	Max – 42 11 5 8 26 6 4 8	Max - 42 25 6 17 54 14 10 21
n.input P.input	more conv more org similar N/A more conv more org similar N/A	Max – 42 11 5 8 26 6 4 8 32	Max – 42 25 6 17 54 14 10 21 57
n.input P.input Moisture	more conv more org similar N/A more conv more org similar N/A high	Max – 42 11 5 8 26 6 4 8 32 2	Max – 42 25 6 17 54 14 10 21 57 7
n.input P.input Moisture	more conv more org similar N/A more conv more org similar N/A high medium	Max – 42 11 5 8 26 6 4 8 32 2 1	Max - 42 25 6 17 54 14 10 21 57 7 2
n.input P.input Moisture	more conv more org similar N/A more conv more org similar N/A high medium N/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47	Max - 42 25 6 17 54 14 10 21 57 7 2 93
n.input P.input Moisture Soil.carbon	more conv more org similar N/A more conv more org similar N/A high medium N/A high	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1
n.input P.input Moisture Soil.carbon	more conv more org similar N/A more conv more org similar N/A high medium N/A high low	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 1	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1
n.input P.input Moisture Soil.carbon	more conv more org similar N/A more conv more org similar N/A high medium N/A high low medium	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 3
n.input P.input Moisture Soil.carbon	more convmore orgsimilarN/Amore convmore orgsimilarN/AhighmediumN/AhighlowmediumN/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97
n.input P.input Moisture Soil.carbon	more conv more org similar N/A more conv more org similar N/A high medium N/A high low medium N/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1	Max – 42 25 6 17 54 14 10 21 57 7 2 93 1 1 3 97 1
n.input P.input Moisture Soil.carbon Soil.ph	more conv more org similar N/A more conv more org similar N/A high medium N/A high low medium N/A acidic neutral	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97 1 16
n.input P.input Moisture Soil.carbon Soil.ph	more conv more org similar N/Amore conv more org similar N/Ahigh medium N/Ahigh nedium N/Ahigh low medium N/Aacidic neutral strong acidic	Max - 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9 1	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97 1 16 4
n.input P.input Moisture Soil.carbon Soil.ph	more conv more org similarN/Amore conv more org similarN/Ahigh medium N/Ahigh low medium N/Ahigh low medium N/Astrong acidic strong alkaline	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9 1 2	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97 1 1 16 4 9
n.input P.input Moisture Soil.carbon Soil.ph	more conv more org similarN/Amore conv more org similarN/Ahigh mediumN/Ahigh low mediumN/Aacidic neutral strong acidic strong alkaline N/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9 1 2 37	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97 1 1 16 4 9 72
n.input P.input Moisture Soil.carbon Soil.ph	more conv more org similarN/Amore conv more org similarN/Ahigh medium N/Ahigh low medium N/Ahigh low medium N/Astrong acidic strong alkaline N/AN/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9 1 2 37 1	Max - 42 25 6 17 54 14 10 21 57 7 2 93 1 1 1 3 97 1 1 16 4 9 72 1
n.input P.input Moisture Soil.carbon Soil.ph Organismal group	more conv more org similarN/Amore conv more org similarN/Ahigh mediumN/Ahigh low mediumN/Aacidic neutral strong acidic strong alkaline N/AN/A	Max – 42 11 5 8 26 6 4 8 32 2 1 47 1 1 2 46 1 9 1 2 37 1 20	$\begin{array}{r} \text{Max} - 42 \\ 25 \\ 6 \\ 17 \\ 54 \\ 14 \\ 10 \\ 21 \\ 57 \\ 7 \\ 2 \\ 93 \\ 1 \\ 1 \\ 1 \\ 3 \\ 97 \\ 1 \\ 16 \\ 4 \\ 9 \\ 72 \\ 1 \\ 14 \\ 1 \end{array}$

	Bacterial	6	8
	Birds	1	1
	Earthworms	4	7
	Fungi	6	11
	Mammals	2	2
	Microbes	5	6
	Nematodes	7	13
	Plants	9	12
Functional group	Decomp	4	8
	Detritovore	1	1
	Fungivore	1	1
	Herbivore	3	5
	Other	9	13
	Parasitoid	4	5
	Pollinator	6	6
	Predator	16	21
	Producer	8	11
	N/A	20	31

Category	Class	Studies	Estimates
Country	Argentina	1	1
	Belgium	1	1
	Belgium and The Netherlands	1	1
	Brazil	1	1
	Canada	3	3
	Costa Rica	2	2
	Costa Rica and Guatemala	1	1
	Croatia	1	1
	Czech Republic	1	1
	Estonia	1	2
	Finland	2	2
	France	1	1
	Germany	4	10
	Ireland	2	3
	Italy	2	2
	South Africa	1	1
	Spain	4	9
	Sweden	1	1
	Switzerland	5	8
	Thailand	1	1
	The Netherlands	4	7
	Tunisia	1	1
	UK	3	9
	USA	15	25
Continent	Africa	2	2
	Asia	1	1
	Europe	33	58
	North America	20	30
	South America	3	3
Biome	Boreal	2	2
	Desert	1	2
	Mediterranean	8	13
	Temperate	43	72
	Tropical	5	5
Year.initiated	1975-2015		
Study.duration	1	29	44
	2	15	26
	3	4	4
	4	3	10
	6	3	4
	8	2	3
	11	1	1
	43	1	1

Table S12. Number of studies and effect sizes (estimates) for biotic richness by category

	N/A	1	1
Study.grp	Farm	20	26
5 6 F	Field	15	27
	Plot	24	41
Study.type	Experiment Station	20	35
Stadynype	On Farm	30	40
	Survey	8	18
	N/A	1	1
Crop		1	1
Стор	Apple	5	7
	Borlow	1	1
	Bancy	1	1
	Deall	1	1
	General	1	1
	Cereals	8	8
	Citrus		1
	Clover	1	1
	Coffee	2	2
	Corn	3	3
	Dairy	2	3
	Grapes	8	10
	Grass	1	1
	Guarana	1	1
	Multi	9	17
	Olive	1	1
	Other	1	1
	Peach	1	1
	Potato	3	3
	Rice	1	1
	Теа	1	1
	Tomato	1	3
	Watermelon	1	1
	Wheat	12	23
	N/A	1	1
Cron type	Beverage	3	3
Crop.type	Cereals	23	36
	Fruits	15	20
	Laguminous	15	1
	Multi	1	1
			1
	Oil crops		1
	Other	8	9
	Koot	5	5
	Vegetables	3	5
	N/A	7	15
Annual.perennial	Annual	31	53
	Annual/perennial	3	3
	Perennial	21	27

	37/4	-	4.4
	N/A	5	11
Crop.diversity	Monocrop	38	63
	Multicrop.both	13	21
	Multicrop.org	2	2
	N/A	6	8
Rotations	Longer conventional	1	1
	Longer organic	3	6
	None	20	31
	Similar	21	32
	N/A	14	$\frac{32}{24}$
Irrigation	Both	8	18
Ingation	Conv	0	10
	Colly		
	N/A	4	5
70'11		40	1
Tillage	Conventional no-till		1
	Conventional reduced		2
	No-till	3	5
	Organic reduced	2	2
	Reduced	1	1
	Standard	13	25
	Variable	3	3
	N/A	35	55
Org.cert	Biodynamic	1	2
	Certified	17	31
	Org.stand	26	33
	N/Ă	15	28
Conv.cert	Commercial	41	63
	Low input	1	1
	N/A	17	30
Development	Developed	52	87
	Less developed	7	7
n coords		Min - 1	Min - 1
n.coords		Average $= 14.4$	Average -13.9
		Max - 240	Max - 240
n input	more conv	7	10
n.mput			
	similar		
	N/A	39	61
P.input	more conv	4	5
	more org	3	4
	similar	8	16
	N/A	44	69
Moisture	high	1	1
	medium	1	2
	N/A	57	91
Soil.carbon	high	2	2

	medium	1	2
	N/A	56	90
Soil.ph	acidic	1	2
	neutral	7	9
	strong alkaline	1	2
	N/A	50	81
Organismal	Archaea	2	2
group	Arth	19	35
	Bacterial	7	7
	Birds	3	3
	Earthworms	2	5
	Fungi	11	12
	Microbes	2	2
	Nematodes	4	5
	Plants	21	22
	Protozoa	1	1
Functional group	Decomp	3	6
	Detritovore	1	1
	Fungivore	1	1
	Herbivore	4	6
	Omnivore	1	1
	Other	12	14
	Parasitoid	2	2
	Pollinator	6	7
	Predator	10	11
	Producer	19	20
	N/A	18	25

Category	Class	Studies	Estimates
Country	Australia	1	2
	Bolivia	1	1
	Canada	9	16
	China	1	1
	Croatia	1	1
	Czech Republic	1	1
	Denmark	1	6
	Estonia	1	4
	France	1	1
	Germany	2	3
	Greece	2	2
	India	8	12
	Italy	8	12
	Kenya	1	3
	Romania	1	1
	South Africa	1	2
	Spain	4	5
	Sweden	1	1
	Switzerland	1	1
	Taiwan	1	5
	Turkey	1	1
	UK	3	3
	USA	27	75
Continent	Africa	2	5
	Asia	10	18
	Australia	1	2
	Europe	28	42
	North America	36	91
	South America	1	1
Biome	Desert	4	7
	Mediterranean	14	16
	Temperate	51	118
	Tropical	9	18
Year.initiated	1978-2015		
Study.duration	1	5	6
	2	11	15
	3	19	38
	4	11	25
	5	5	13
	6	3	5
	7	7	15
	8	2	8
	9	5	7

 Table S13. Number of studies and effect sizes (estimates) for yield by category

	10	2	0
	10	2	8
			1
	13	3	5
	16	1	1
	17	1	3
	19	1	3
	21	1	6
Study.grp	Farm	2	2
501	Field	12	19
	Plot	64	138
Study.type	Experiment Station	61	138
5 51	On Farm	15	19
	Survey	2	2
Cron	Alfalfa	6	6
crop	Amaranth	1	1
	Apple	2	1
	Apple	J 1	1
	Apricot		1
	Barley	2	2
	Bean	2	2
	Broccoli	1	1
	Cabbage	5	5
	Cacao	1	1
	Cantaloupe	1	1
	Carrot	1	1
	Cauliflower	1	1
	Corn	23	29
	Cotton	2	2
	Cowpea	1	1
	Elephant foot vam	1	1
	Flax	1	1
	Green beans	1	1
	Look	1	1
	Leek	1	1
			1
	Lettuce	2	2
	Lupin	1	1
	Melon	2	2
	Oats	6	6
	Okra	1	1
	Onion	3	3
	Pea	2	2
	Pepper	2	2
	Peppermint	1	1
	Plum	1	1
	Potato	5	5
	Pumpkin	1	1
	Rice	3	3

	D	1	1
	Kye		
	Safflower		
	Soybean	17	23
	Spinach	1	1
	Squash	1	1
	Strawberry	2	2
	Sweet corn	1	1
	Sweet potato	1	1
	Taro	1	1
	Tomato	6	7
	Water spinach	1	1
	Wheat	25	26
	Vam	1	1
Crop type	T dill Devene co	1	1
Crop.type	Gereale		
	Cereals	45	09
	Fruits	7	
	Leguminous	7	8
	Oil crops	20	26
	Other	8	8
	Root	9	9
	Vegetables	20	31
Annual.perennial	Annual	71	146
	Annual/perennial	6	6
	Perennial	7	7
Crop.diversity	Monocrop	39	61
1 5	Multicrop.both	39	98
Rotations	Longer conventional	2	3
	Longer organic	4	10
	None	21	26
	Similar	53	118
	N/A	2	2
Imigation	N/A Doth	20	57
Inigation	Boui	30	2
	Conv		3
	Neither		22
	N/A	36	11
Tillage	Conventional no-till	1	1
	Conventional reduced	1	4
	No-till	12	20
	Organic reduced	1	3
	Reduced	2	5
	Standard	32	76
	Variable	4	6
	N/A	27	44
Org.cert	Certified	10	12
8	Org.stand	57	124
	N/A	11	23
1	± 1/ £ ±	11	

Conv.cert	Commercial	54	114
	Low input	8	10
	N/A	16	35
Development	Developed	67	143
1	Less developed	11	16
n.coords	· · ·	Min – 1	Min – 1
		Average – 1.6	Average – 1.4
		Max - 22	Max - 22
n.input	more conv	24	36
1	more org	8	17
	Similar	24	66
	N/A	22	40
P.input	more conv	11	14
1	more org	5	9
	Similar	17	41
	N/A	45	95
Moisture	high	2	2
	low	1	1
	medium	4	19
	N/A	71	137
Soil.carbon	high	3	5
	low	1	1
	medium	3	8
	N/A	71	145
Soil.ph	medium	1	4
1	neutral	23	44
	strong acidic	4	4
	strong alkaline	5	7
	N/A	45	100
Yield Units	bu/ac	1	3
	g/m^2	1	1
	ka/ha	1	3
	Kg	1	2
	kg Fw/plant	1	1
	kg/ha	13	21
	kg/m^2	1	1
	kg/plant	1	1
	kg/tree	2	2
	L/ha	1	1
	Mg/ha	15	33
	t/ha	21	33
	tDM/ha	1	1
	NA	18	56
Category	Class	Studies	Estimates
------------------	----------------------	---------	-----------
Country	USA	9	37
Continent	North America	9	37
Biome	Mediterranean	1	1
	Temperate	8	36
Year.initiated	1988-2005		
Study.duration	2	1	1
·····	3	3	6
	4	1	5
	5	1	8
	6	1	2
	8	1	5
	10	1	5
	21	1	5
Study.grp	Plot	9	37
Study.type	Experiment Station	8	36
	On Farm	1	1
Crop	Bean	1	1
-	Corn	7	13
	Oats	2	2
	Okra	1	1
	Safflower	1	1
	Soybean	5	11
	Squash	1	1
	Strawberry	1	1
	Tomato	2	3
	Wheat	2	3
Crop.type	Cereals	7	18
	Fruits	1	1
	Leguminous	1	1
	Oil crops	6	12
	Vegetables	3	5
Annual.perennial	Annual	9	37
Crop.diversity	Monocrop	3	3
	Multicrop.both	7	34
Rotations	Longer Conventional	1	2
	Longer Organic	3	9
	None	2	2
	Similar	6	24
Irrigation	Both	4	16
	N/A	6	21
Tillage	Conventional reduced	1	1
	No-till	1	2

Table S14. Number of studies and effect sizes (estimates) for profitability by category

	Organic reduced	1	2
	Standard	6	30
	N/A	2	2
Org.cert	Org.stand	9	37
Conv.cert	Commercial	9	35
	Low input	1	2
Development	Developed	9	37
-	Less developed	0	0
n.coords		Min - 1	Min – 1
		Average – 1.1	Average – 1.1
		Max - 2	Max – 2
n.input	More conv	2	2
_	More org	1	4
	Similar	6	25
	N/A	2	6
P.input	Moe conv	2	2
-	Similar	4	16
	N/A	4	19
Moisture	Medium	3	14
	N/A	6	23
Soil.carbon	Medium	1	4
	N/A	8	33
Soil.ph	Neutral	2	5
	Strong Acidic	1	2
	N/A	7	30

Table S15. Mean and median values for various landscape metrics across the meta-datasets for biotic abundance, biotic richness, crop yield, and profitability. Data shown represent the mean values for crop field size, crop %, patch richness, and Shannon's habitat diversity index, as well as the standard errors of these metrics. Values were computed from the entire meta-datasets for each sustainability metric and show the mean and variability of each measure.

	Biotic ab	undance	Biotic	richness	Crop	yield	Profit	ability
Landscape	Mean	Median	Mean	Median	Mean	Median	Mean	Median
metric								
Crop field size	26.7	27.9	28.0	28.4	26.5	27.0	30.7	31.2
Crop field size	0.22	0.00	0.41	0.00	0.073	0.00	0.00	0.00
(standard error)								
Crop %	47.8	55.6	48.5	51.8	50.7	56.8	36.4	36.5
Crop %	2.4	0.00	3.2	1.3	0.78	0.00	0.0015	0.00
(standard error)								
Patch richness	4.3	3.0	4.4	3.2	5.3	5.0	7.4	7.0
Patch richness	0.096	0.00	0.12	0.00	0.022	0.0074	0.00	0.00
(standard error)								
Shannon's habitat	0.85	0.80	0.86	0.90	0.87	0.95	0.96	1.1
diversity								
Shannon's habitat	0.035	0.00	0.038	0.00	0.0081	0.00	0.00	0.00
diversity								
(standard error)								

Table S16. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic abundance in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.23	-0.075	-0.41	0.26
% Crop ²	0.11	0.61	-0.031	1.3
Field size	0.83	0.41	0.079	0.73
Field size ²	0.24	0.21	-0.49	0.92
% Crop:Field size	0.06	-0.24	-0.92	0.44

Table S17. AICc and \triangle AICc values for models assessing biotic abundance in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded.

Model	Factor(s)	AICc	∆ <i>AICc</i>
Abund_1	% Crop	241.6	4.0
Abund_2	% Crop, $%$ Crop ²	241.3	3.7
Abund_3	Field size	237.6	0.0
Abund_4	Field size, Field size ²	239.5	1.9
Abund_5	% Crop, Field size, % Crop:Field size	242.5	4.9
Abund_6	% Crop, % Crop ² , Field size, Field size ²	244.7	7.1
	% Crop:Field size		

Table S18. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic abundance in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.28	0.040	-0.44	0.52
% Crop ²	0.20	0.85	0.13	1.6
Field size	0.68	0.52	0.085	0.96
Field size ²	0.30	0.62	-0.32	1.6
SHDI	0.21	-0.21	-0.72	0.30
% Crop:Field size	0.04	0.15	-0.69	1.0
% Crop:SHDI	0.03	-0.39	-1.4	0.58
Field size:SHDI	0.11	-0.12	-1.3	1.1

Table S19. AICc and \triangle AICc values for models assessing biotic abundance in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded.

Model	Factor(s)	AICc	$\Delta AICc$
Abund_7	% Crop	182.4	3.4
Abund_8	% Crop, % Crop ²	180.2	1.2
Abund_9	Field size	179.0	0.0
Abund_10	Field size, Field size ²	179.5	0.5
Abund_11	SHDI	181.6	2.6
Abund_12	% Crop, Field size, % Crop:Field size	183.8	4.8
Abund_13	% Crop, % Crop ² , Field size, Field size ²	185.4	6.4
	% Crop:Field size	186.7	7.7
Abund_14	% Crop, SHDI, % Crop:SHDI		
Abund_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	184.5	5.5
Abund_16	Field size, SHDI, Field size:SHDI	182.4	3.4
Abund_17	Field size, Field size ² , SHDI, Field size:SHDI	182.6	3.6
Abund_18	% Crop, Field size, SHDI, % Crop:Field size	188.6	9.6
	% Crop:SHDI, Field size:SHDI		
Abund_19	% Crop, % Crop ² , Field size, Field size ² , SHDI,	188.8	9.3
	% Crop:Field size, % Crop:SHDI,		
	Field size:SHDI		

Table S20. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic abundance in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.30	-0.018	-0.63	0.60
% Crop ²	0.21	0.85	0.098	1.6
Field size	0.70	0.56	0.072	1.1
Field size ²	0.31	0.63	-0.34	1.6
PR	0.25	-0.26	-0.90	0.37
% Crop:Field size	0.06	0.22	-0.65	1.1
% Crop:PR	0.06	-1.0	-3.0	1.0
Field size:PR	0.17	0.30	-1.1	1.7

Table S21. AICc and \triangle AICc values for models assessing biotic abundance in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded.

Model	Factor(s)	AICc	$\Delta AICc$
Abund_20	% Crop	182.4	3.4
Abund_21	% Crop, % Crop ²	180.2	1.2
Abund_22	Field size	179.0	0.0
Abund_23	Field size, Field size ²	179.5	0.5
Abund_24	PR	182.0	3.0
Abund_25	% Crop, Field size, % Crop:Field size	183.8	4.8
Abund_26	% Crop, % Crop ² , Field size, Field size ² ,	185.4	6.4
	% Crop:Field size		
Abund_27	% Crop, PR, % Crop:PR	186.2	7.2
Abund_28	% Crop, % Crop ² , PR, % Crop:PR	183.6	4.6
Abund_29	Field size, PR, Field size:PR	181.5	2.5
Abund_30	Field size, Field size ² , PR, Field size:PR	182.0	3.0
Abund_31	% Crop, Field size, PR, % Crop:Field size	186.0	7.0
	% Crop:PR, Field size:PR		
Abund_32	% Crop, % Crop ² , Field size, Field size ² , PR,	184.8	5.8
	% Crop:Field size, % Crop:PR,		
	Field size:PR		

Table S22. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic richness in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.15	0.089	-0.10	0.28
% Crop ²	0.02	0.049	-0.27	0.37
Field size	0.86	0.23	0.046	0.42
Field size ²	0.26	0.27	-0.049	0.60
% Crop:Field size	0.02	0.16	-0.25	0.58

Table S23. AICc and \triangle AICc values for models assessing biotic richness in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map.

Model	Factor(s)	AICc	$\Delta AICc$
Rich_1	% Crop	162.4	3.2
Rich_2	% Crop, % Crop ²	166.0	6.8
Rich_3	Field size	159.2	0.0
Rich_4	Field size, Field size	160.9	1.7
Rich_5	% Crop, Field size, % Crop:Field size	166.6	7.4
Rich_6	% Crop, % Crop ² , Field size, Field size ² ,	172.2	13.0
	% Crop:Field size		

Table S24. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic richness in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.08	0.082	-0.15	0.32
% Crop ²	0.01	0.041	-0.33	0.41
Field size	0.89	0.31	0.094	0.53
Field size ²	0.37	0.37	0.0033	0.74
SHDI	0.15	-0.054	-0.28	0.18
% Crop:Field size	0.02	0.17	-0.35	0.69
% Crop:SHDI	< 0.01	-0.20	-0.54	0.14
Field size:SHDI	0.10	-0.48	-1.0	0.050

Table S25. AICc and \triangle AICc values for models assessing biotic richness in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Rich_7	% Crop	154.3	4.3
Rich_8	% Crop, % Crop^2	157.7	7.7
Rich_9	Field size	150.0	0.0
Rich_10	Field size, Field size ²	150.8	0.8
Rich_11	SHDI	154.6	4.6
Rich_12	% Crop, Field size, % Crop:Field size	157.0	7.0
Rich_13	% Crop, % Crop ² , Field size, Field size ² ,	161.5	11.5
	% Crop:Field size		
Rich_14	% Crop, SHDI, % Crop:SHDI	161.2	11.2
Rich_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	164.8	14.8
Rich_16	Field size, SHDI, Field size:SHDI	154.4	4.4
Rich_17	Field size, Field size ² , SHDI, Field size:SHDI	154.3	4.3
Rich_18	% Crop, Field size, SHDI, % Crop:Field size	164.4	14.8
	% Crop:SHDI, Field size:SHDI		
Rich_19	% Crop, % Crop ² , Field size, Field size ² , SHDI,	165.1	14.3
	% Crop:Field size, % Crop:SHDI,		
	Field size:SHDI		

Table S26. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of biotic richness in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.08	0.084	-0.15	0.32
% Crop ²	0.01	0.049	-0.31	0.41
Field size	0.89	0.31	0.092	0.53
Field size ²	0.38	0.38	0.0051	0.75
PR	0.12	-0.036	-0.26	0.19
% Crop:Field size	0.02	0.18	-0.34	0.69
% Crop:PR	< 0.01	-0.18	-0.58	0.21
Field size:PR	0.08	-0.44	-0.98	0.11

Table S27. AICc and \triangle AICc values for models assessing biotic richness in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Rich_20	% Crop	154.3	4.3
Rich_21	% Crop, $%$ Crop ²	157.7	7.7
Rich_22	Field size	150.0	0.0
Rich_23	Field size, Field size ²	150.8	0.8
Rich_24	PR	155.0	5.0
Rich_25	% Crop, Field size, % Crop:Field size	157.0	7.0
Rich_26	% Crop, % Crop ² , Field size, Field size ² ,	161.5	11.5
	% Crop:Field size		
Rich_27	% Crop, PR, % Crop:PR	161.6	11.6
Rich_28	% Crop, % Crop ² , PR, % Crop:PR	165.2	15.2
Rich_29	Field size, PR, Field size:PR	155.6	5.6
Rich_30	Field size, Field size ² , PR, Field size:PR	154.6	4.6
Rich_31	% Crop, Field size, PR, % Crop:Field size	165.5	15.5
	% Crop:PR, Field size:PR		
Rich_32	% Crop, % Crop ² , Field size, Field size ² , PR,	167.7	17.7
	% Crop:Field size, % Crop:PR,		
	Field size:PR		

Metric	Estimate	SE	t	df	Р
% Crop habitat	0.030	0.018	1.68	110	0.095
% Natural habitat	0.012	0.022	0.58	110	0.57
Crop patch richness	-1.88	0.44	-4.23	110	< 0.0001
Crop SHDI*	-3.62	1.18	-3.08	110	0.0026
Natural patch richness	-0.58	0.53	-1.08	110	0.28
Natural SHDI*	-2.91	1.50	-1.94	110	0.055

Table S28. Relationship between field size and various metrics of crop diversity and natural habitat diversity.

* Shannon's habitat diversity index

Table S29. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of crop yield in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.33	-0.018	-0.15	0.11
% Crop ²	0.05	0.083	-0.25	0.41
Field size	0.68	-0.10	-0.24	0.032
Field size ²	0.11	-0.13	-0.40	0.13
% Crop:Field size	< 0.01	-0.0027	-0.30	0.30

Table S30. AICc and \triangle AICc values for models assessing crop yield in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Model	Factor(s)	AICc	$\Delta AICc$
Yield_1	% Crop	128.6	1.5
Yield_2	% Crop, $%$ Crop ²	132.0	4.9
Yield_3	Field size	127.1	0.0
Yield_4	Field size, Field size ²	130.4	3.3
Yield_5	% Crop, Field size, % Crop:Field size	136.3	9.2
Yield_6	% Crop, % Crop ² , Field size, Field size ² ,	142.9	15.8
	% Crop:Field size		

Table S31. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of crop yield in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon Diversity Index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.17	0.0073	-0.17	0.18
% Crop ²	0.15	0.23	-0.20	0.65
Field size	0.72	-0.10	-0.30	0.096
Field size ²	0.60	-0.55	-0.90	-0.20
SHDI	0.12	0.030	-0.12	0.18
% Crop:Field size	< 0.01	0.30	-011	0.72
% Crop:SHDI	< 0.01	-0.12	-0.37	0.13
Field size:SHDI	0.01	0.0056	-0.36	0.37

Table S32. AICc and \triangle AICc values for models assessing crop yield in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon Diversity Index for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Yield_7	% Crop	110.9	3.1
Yield_8	% Crop, % Crop ²	113.0	5.2
Yield_9	Field size	110.9	3.1
Yield_10	Field size, Field size ²	107.8	0.0
Yield_11	SHDI	111.1	3.3
Yield_12	% Crop, Field size, % Crop:Field size	118.0	10.2
Yield_13	% Crop, % Crop ² , Field size, Field size ² ,	117.3	9.5
	% Crop:Field size		
Yield_14	% Crop, SHDI, % Crop:SHDI	119.4	11.5
Yield_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	121.0	13.2
Yield_16	Field size, SHDI, Field size:SHDI	119.3	11.5
Yield_17	Field size, Field size ² , SHDI, Field size:SHDI	116.1	8.3
Yield_18	% Crop, Field size, SHDI, % Crop:Field size	129.1	21.3
	% Crop:SHDI, Field size:SHDI		
Yield_19	% Crop, % Crop ² , Field size, Field size ² , SHDI,	129.1	21.3
	% Crop:Field size, % Crop:SHDI,		
	Field size:SHDI		

Table S33. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of crop yield in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.16	0.0088	-0.17	0.19
% Crop ²	0.04	0.23	-0.20	0.65
Field size	0.68	-0.10	-0.30	0.095
Field size ²	0.56	-0.55	-0.90	-0.20
PR	0.19	0.095	-0.063	0.25
% Crop:Field size	< 0.01	0.30	-0.11	0.72
% Crop:PR	< 0.01	0.034	-0.35	0.36
Field size:PR	0.02	0.044	-0.29	0.43

Table S34. AICc and \triangle AICc values for models assessing crop yield in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = Patch richness for the landscape

Model	Factor(s)	AICc	$\Delta AICc$
Yield_20	% Crop	110.9	3.1
Yield_21	% Crop, % Crop ²	113.0	5.2
Yield_22	Field size	110.9	3.1
Yield_23	Field size, Field size ²	107.8	0.0
Yield_24	PR	110.0	2.2
Yield_25	% Crop, Field size, % Crop:Field size	118.0	10.2
Yield_26	% Crop, % Crop ² , Field size, Field size ² ,	117.3	9.5
	% Crop:Field size		
Yield_27	% Crop, PR, % Crop:PR	118.6	10.8
Yield_28	% Crop, % Crop ² , PR, % Crop:PR	119.7	11.9
Yield_29	Field size, PR, Field size:PR	118.2	10.4
Yield_30	Field size, Field size ² , PR, Field size:PR	115.1	7.3
Yield_31	% Crop, Field size, PR, % Crop:Field size	128.8	21.0
	% Crop:PR, Field size:PR		
Yield_32	% Crop, % Crop ² , Field size, Field size ² , PR,	127.7	19.9
	% Crop:Field size, % Crop:PR,		
	Field size:PR		

Table S35. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of profitability in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.23	0.13	-0.19	0.45
% Crop ²	0.07	0.55	0.14	0.96
Field size	0.88	-0.35	-0.56	-0.13
Field size ²	0.08	0.021	-0.28	0.32
% Crop:Field size	0.10	0.11	-0.11	0.33

Table S36. AICc and \triangle AICc values for models assessing profitability in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Model	Factor(s)	AICc	$\Delta AICc$
Profit_1	% Crop	51.2	5.2
Profit_2	% Crop, $%$ Crop ²	50.5	4.5
Profit_3	Field size	46.0	0.0
Profit_4	Field size, Field size ²	50.4	4.4
Profit_5	% Crop, Field size, % Crop:Field size	49.9	3.9
Profit_6	% Crop, % Crop ² , Field size, Field size ² ,	57.6	11.6
	% Crop:Field size		

Table S37. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of profitability in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.22	0.12	-0.89	1.1
% Crop ²	0.07	0.49	-3.1	4.0
Field size	0.84	-0.35	-0.64	-0.058
Field size ²	0.08	-0.012	-2.2	2.2
SHDI	0.06	-0.11	-2.9	2.6
% Crop:Field size	0.10	0.17	-3.7	4.1
% Crop:SHDI	< 0.01	-1.0	-10.8	8.6
Field size:SHDI	0.01	0.36	-7.2	7.9

Table S38. AICc and \triangle AICc values for models assessing profitability in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Profit_7	% Crop	51.2	5.2
Profit_8	% Crop, $%$ Crop ²	50.5	4.5
Profit_9	Field size	46.0	0.0
Profit_10	Field size, Field size ²	50.4	4.4
Profit_11	SHDI	51.5	5.5
Profit_12	% Crop, Field size, % Crop:Field size	49.9	3.9
Profit_13	% Crop, % Crop ² , Field size, Field size ² ,	57.6	11.5
	% Crop:Field size	58.4	12.4
Profit_14	% Crop, SHDI, % Crop:SHDI		
Profit_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	60.0	14.0
Profit_16	Field size, SHDI, Field size:SHDI	54.6	8.6
Profit_17	Field size, Field size ² , SHDI, Field size:SHDI	57.7	11.7
Profit_18	% Crop, Field size, SHDI, % Crop:Field size	62.1	16.1
	% Crop:SHDI, Field size:SHDI		
Profit_19	% Crop, % Crop ² , Field size, Field size ² , SHDI,	61.7	11.3
	% Crop:Field size, % Crop:SHDI,		
	Field size:SHDI		

Table S39. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of profitability in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.26	0.52	-1.8	2.8
% Crop ²	0.08	0.54	0.058	1.0
Field size	0.80	-0.35	-0.59	-0.11
Field size ²	0.07	0.020	-0.30	0.34
PR	0.12	2.6	-7.5	12.8
% Crop:Field size	0.11	0.11	-0.12	0.34
% Crop:PR	0.06	4.7	-6.5	16.0
Field size:PR	0.03	0.17	-0.46	0.79

Table S40. AICc and \triangle AICc values for models assessing profitability in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Model	Factor(s)	AICc	$\Delta AICc$
Profit_20	% Crop	51.2	5.2
Profit_21	% Crop, $%$ Crop ²	50.5	4.5
Profit_22	Field size	46.0	0.0
Profit_23	Field size, Field size ²	50.4	4.4
Profit_24	PR	51.1	5.1
Profit_25	% Crop, Field size, % Crop:Field ssize	49.9	3.9
Profit_26	% Crop, % Crop ² , Field size, Field size ² ,	57.6	11.6
	% Crop:Field size		
Profit_27	% Crop, PR, % Crop:PR	52.3	6.3
Profit_28	% Crop, % Crop ² , PR, % Crop:PR	53.1	7.1
Profit_29	Field size, PR, Field size:PR	53.7	7.7
Profit_30	Field size, Field size ² , PR, Field size:PR	58.4	12.4
Profit_31	% Crop, Field size, PR, % Crop:Field size	53.3	7.3
	% Crop:PR, Field size:PR		
Profit_31	% Crop, % Crop ² , Field size, Field size ² , PR,	61.6	15.6
	% Crop:Field size, % Crop:PR,		
	Field size:PR		

Table S41. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of production costs in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.43	-0.019	-0.23	0.19
% Crop ²	0.09	-0.25	-0.69	0.19
Field size	0.58	-0.033	-0.28	0.21
Field size ²	0.17	0.27	-0.0087	0.54
% Crop:Field size	0.01	0.20	-0.23	0.64

Table S42. AICc and \triangle AICc values for models assessing production costs in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Model	Factor(s)	AICc	$\Delta AICc$
Cost_1	% Crop	0.2	0.4
Cost_2	% Crop, % Crop^2	2.9	3.1
Cost_3	Field size	-0.2	0.0
Cost_4	Field size, Field size ²	1.6	1.8
Cost_5	% Crop, Field size, % Crop:Field size	7.4	7.6
Cost_6	% Crop, % Crop ² , Field size, Field size ² ,	11.1	11.3
	% Crop:Field size		

Table S43. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of production costs in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.12	-0.029	-1.1	1.0
% Crop ²	0.03	-0.35	-5.0	4.3
Field size	0.16	-0.033	-0.46	0.39
Field size ²	0.04	0.23	-2.0	2.5
SHDI	0.74	0.19	-0.42	0.79
% Crop:Field size	< 0.01	1.2	-16.8	19.3
% Crop:SHDI	< 0.01	-0.33	-5.8	5.1
Field size:SHDI	< 0.01	0.20	-7.2	7.6

Table S44. AICc and \triangle AICc values for models assessing production costs in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Cost_7	% Crop	0.2	4.3
Cost_8	% Crop, % Crop^2	2.8	6.9
Cost_9	Field size	-0.2	3.9
Cost_10	Field size, Field size ²	1.6	5.7
Cost_11	SHDI	-4.1	0.0
Cost_12	% Crop, Field size, % Crop:Field size	7.4	11.5
Cost_13	% Crop, % Crop ² , Field size, Field size ² ,	11.1	15.2
	% Crop:Field size		
Cost_14	% Crop, SHDI, % Crop:SHDI	6.8	10.9
Cost_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	8.1	12.2
Cost_16	Field size, SHDI, Field size:SHDI	5.4	9.5
Cost_17	Field size, Field size ² , SHDI, Field size:SHDI	9.5	13.6
Cost_18	% Crop, Field size, SHDI, % Crop:Field size	17.0	21.1
	% Crop:SHDI, Field size:SHDI		
Cost_19	% Crop, % Crop ² , Field size, Field size ² , SHDI,	14.0	18.1
	% Crop:Field size, % Crop:SHDI,		
	Field size:SHDI		

Table S45. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of production costs in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if ω > 0.6. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.38	-0.32	-3.1	2.4
% Crop ²	0.07	-0.24	-0.68	0.20
Field size	0.41	0.024	-0.29	0.34
Field size ²	0.10	0.25	-0.015	0.52
PR	0.47	-0.51	-8.7	7.7
% Crop:Field size	0.04	-0.037	-0.29	0.22
% Crop:PR	0.15	-1.9	-13.9	10.1
Field size:PR	0.11	0.57	-0.29	1.0

Table S46. AICc and \triangle AICc values for models assessing production costs in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = patch richness for the landscape

Model	Factor(s)	AICc	$\Delta AICc$
Cost_20	% Crop	0.2	0.7
Cost_21	% Crop, $%$ Crop ²	2.8	3.3
Cost_22	Field size	-0.2	0.3
Cost_23	Field size, Field size ²	1.6	2.1
Cost_24	PR	-0.5	0.0
Cost_25	% Crop, Field size, % Crop:Field size	7.4	7.9
Cost_26	% Crop, % Crop ² , Field size, Field size ² ,	11.1	11.6
	% Crop:Field size		
Cost_27	% Crop, PR, % Crop:PR	1.2	1.7
Cost_28	% Crop, % Crop ² , PR, % Crop:PR	4.5	5.0
Cost_29	Field size, PR, Field size:PR	2.3	2.8
Cost_30	Field size, Field size ² , PR, Field size:PR	6.2	5.7
Cost_31	% Crop, Field size, PR, % Crop:Field size	3.7	4.2
	% Crop:PR, Field size:PR		
Cost_32	% Crop, % Crop ² , Field size, Field size ² , PR,	13.9	14.4
	% Crop:Field size, % Crop:PR		
	Field size:PR		

Table S47. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of organic price premiums in relation to landscape factors (simple model set in Table S4). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.19	-0.019	-0.21	0.18
% Crop ²	0.03	0.14	-0.22	0.51
Field size	0.83	-0.13	-0.29	0.028
Field size ²	0.25	0.23	0.022	0.43
% Crop:Field size	0.02	0.21	-0.060	0.48

Table S48. AICc and \triangle AICc values for models assessing organic price premiums in relation to landscape factors (see simple model set in Table S4). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015).

Model	Factor(s)	AICc	∆ <i>AICc</i>
Price_1	% Crop	63.7	2.7
Price_2	% Crop, $%$ Crop ²	67.2	6.2
Price_3	Field size	61.0	0.0
Price_4	Field size, Field size ²	62.6	1.6
Price_5	% Crop, Field size, % Crop:Field size	68.0	7.0
Price_6	% Crop, % Crop ² , Field size, Field size ² ,	73.3	12.3
	% Crop:Field size		

Table S49. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of organic price premiums in relation to landscape factors (complex model set one in Table S5). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.13	-0.022	-0.81	0.76
% Crop ²	0.02	-0.093	-4.1	4.3
Field size	0.58	-0.13	-0.35	0.082
Field size ²	0.18	0.22	-0.70	1.1
SHDI	0.63	0.13	-0.60	0.87
% Crop:Field size	0.01	0.31	-6.3	6.9
% Crop:SHDI	< 0.01	-0.28	-5.8	5.4
Field size:SHDI	< 0.01	0.21	-5.9	6.2

Table S50. AICc and \triangle AICc values for models assessing organic price premiums in relation to landscape factors (see complex model set one, Table S5). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); SHDI = Shannon diversity index for the landscape.

Model	Factor(s)	AICc	$\Delta AICc$
Price_7	% Crop	62.7	1.7
Price_8	% Crop, $%$ Crop ²	67.2	6.2
Price_9	Field size	61.0	0.0
Price_10	Field size, Field size ²	62.6	1.6
Price_11	SHDI	61.5	0.5
Price_12	% Crop, Field size, % Crop:Field size	68.0	7.0
Price_13	% Crop, % Crop ² , Field size, Field size ² ,	73.3	12.3
	% Crop:Field size		
Price_14	% Crop, SHDI, % Crop:SHDI	71.3	10.3
Price_15	% Crop, % Crop ² , SHDI, % Crop:SHDI	74.4	13.4
Price_16	Field size, SHDI, Field size:SHDI	69.6	8.6
Price_17	Field size, Field size ² , SHDI, Field size:SHDI	72.2	11.2
Price_18	% Crop, Field size, SHDI, % Crop:Field size	80.4	19.4
	% Crop:SHDI, Field size:SHDI		
Price_10	% Crop, % Crop ² , Field size, Field size ² , SHDI,	78.8	17.3
	% Crop:Field size, % Crop:SHDI		
	Field size:SHDI		

Table S51. Model-averaged partial regression coefficients (β) and unconditional 90% CIs from models of organic price premiums in relation to landscape factors (complex model set two in Table S6). Akaike weights (ω) indicate relative importance of each covariate based on summing weights across models where the covariate occurs. Coefficients are in bold if CIs do not include 0 or if $\omega > 0.6$. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = Patch richness for the landscape

Covariate	ω	β	Lower CI	Upper CI
% Crop	0.19	0.035	-1.4	1.5
% Crop ²	0.03	0.14	-0.27	0.55
Field size	0.71	-0.13	-0.30	0.037
Field size ²	0.22	0.23	0.022	0.43
PR	0.18	0.23	-4.5	5.0
% Crop:Field size	0.02	0.20	-0.081	0.49
% Crop:PR	0.03	0.89	-8.9	10.7
Field size:PR	0.03	0.31	-0.10	0.72

Table S52. AICc and \triangle AICc values for models assessing organic price premiums in relation to landscape factors (see complex model set two, Table S6). Models with a \triangle AICc < 2.0 are bolded. % Crop = % of landscape in crop production; Field size = field size from global field size map (Fritz et al. 2015); PR = Patch richness for the landscape

Model	Factor(s)	AICc	$\Delta AICc$
Price_20	% Crop	63.7	2.7
Price_21	% Crop, % Crop ²	67.2	6.2
Price_22	Field size	61.0	0.0
Price_23	Field size, Field size ²	62.6	1.6
Price_24	PR	63.7	2.7
Price_25	% Crop, Field size, % Crop:Field size	68.0	7.0
Price_26	% Crop, % Crop ² , Field size, Field size ² ,	73.3	12.3
	% Crop:Field size		
Price_27	% Crop, PR, % Crop:PR	66.8	5.8
Price_28	% Crop, % Crop ² , PR, % Crop:PR	70.5	9.5
Price_29	Field size, PR, Field size:PR	67.6	6.6
Price_30	Field size, Field size ² , PR, Field size:PR	69.1	8.1
Price_31	% Crop, Field size, PR, % Crop:Field size	71.9	10.9
	% Crop:PR, Field size:PR		
Price_32	% Crop, % Crop ² , Field size, Field size ² , PR,	78.7	15.9
	% Crop:Field size, % Crop:PR		
	Field size:PR		

Fig. S1. Diagram showing how landscape was calculated using a 1 km buffer. Landscapes shown represent areas with (a) low percent crop, small field size (India), (b) low percent crop, large field size (Ohio, USA), (c) high percent crop, small field size (India), and (d) high percent crop, large field size (California, USA).

Fig. S2. Histograms showing spread in average values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of biotic abundance in organic compared to conventional systems.

Fig. S3. Histograms showing spread in standard error values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of biotic abundance in organic compared to conventional systems.

Fig. S4. Histograms showing spread in average values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of biotic richness in organic compared to conventional systems.

Fig. S5. Histograms showing spread in standard error values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of biotic richness in organic compared to conventional systems.

Fig. S6. Histograms showing spread in average values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of crop yield in organic compared to conventional systems.

Fig. S7. Histograms showing spread in standard error values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of crop yield in organic compared to conventional systems.

Fig. S8. Histograms showing spread in average values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of profitability in organic compared to conventional systems.

Fig. S9. Histograms showing spread in standard error values for landscape metrics of (A) crop field size, (B) crop %, (C) patch richness, and (D) Shannon's habitat diversity index for studies of profitability in organic compared to conventional systems.

Fig. S10. Relationship between field size, continent, development level, and biome. Average crop field size across biodiversity studies across (A) various continents, (B) developed vs less developed countries, and (C) biomes in the meta-analysis (using the datasets for biotic abundance and biotic richness). Dots indicate values outside of 90% CIs. Center lines indicate median value and box edge indicate 25th and 75th percentiles.

Fig. S11. Effect of crop field size on yield. Best-fit regression (and 90% confidence intervals) showing the relationships between average crop field size based on Fritz et al. (2015) and the log response-ratio effect size for yield of organic vs conventional crops.

Crop field size

Fig. S12. Effect of crop field size on profitability. Best-fit regression (and 90% confidence intervals) showing relationship between average crop field size based on Fritz et al. (2015) and the log response-ratio effect size for profitability of organic vs conventional crops.

Fig. S13. Correlation between (A) crop yields and benefit/cost ratios, (B) production costs and benefit/cost ratios, and (C) price premiums and benefit/cost ratios. Shown are the observed points, the best-fit correlation line, and the 90% confidence interval.

Fig. S14. Map showing the (A) average crop field size and (B) % cropland data layers that were used to calculate landscape metrics in the meta-analysis. Data layers from Fritz et al. (2015).

Fig. S15. Histograms showing spread in values for landscape metrics considered.

Fig. S16. Scatterplot showing pairwise Pearson's correlations for full variable set considered in models. Plots are showing correlations between variables collected on all cover types (not divided into natural and crop cover types).

Fig. S17. Scatterplot showing pairwise Pearson's correlations for landscape composition and natural habitat classes compositional/configurational heterogeneity metrics.

Fig. S18. Scatterplot showing pairwise Pearson's correlations for landscape composition and crop habitat classes compositional/configurational heterogeneity metrics.

Fig. S19. Scatterplot showing pairwise Pearson's correlations for final variable set considered for models.

Supplementary Data 1. Data used in the meta-analysis for abundance, richness, yield, and profit from all countries, including field size and percentage crop. "Simple" data set with fewer landscape metrics from all countries.

Supplementary Data 2. Data used in the meta-analysis for abundance, richness, yield, and profit from the United States and Europe with data on habitat diversity. "Complex" data set with more landscape metrics from fewer countries.

Supplementary Data 3. File listing studies examined for use in the meta-analysis, including if study was included or rejected.

Supplementary Data 4. Reclassification schemes used for the CORINE data layer for European countries (<u>http://www.eea.europa.eu/publications/COR0-landcover</u>) and the NASS Cropland Data Layer for the United States (<u>https://nassgeodata.gmu.edu/CropScape/</u>).